Классовая адресация

Подсети

При
помощи маршрутизаторов и мостов есть возможность расширить сеть,
добавив к ней сегменты, или разделить ее на более мелкие подсети путем
изменения идентификатора сети. В этом случае берется маска подсети,
которая показывает, какой сегмент IP-адреса будет применяться как новый
идентификатор данной подсети. При совпадении идентификаторов можно
делать вывод, что узлы принадлежат одной подсети, иначе они будут
находиться в различных подсетях и для их соединения потребуется
маршрутизатор.

Классы
IP-адресов рассчитаны так, что число сетей и узлов для определенной
организации определено заранее. По умолчанию в организации можно
развернуть только одну сеть с некоторым количеством подключенных к сети
устройств. Есть определенный идентификатор сети и некоторое количество
узлов, имеющее ограничение в соответствии с классом сети. При большом
количестве узлов сеть будет низкой пропускной способности, так как даже
при любой широковещательной рассылке производительность будет падать.

IP-адреса

Если очень упро­щён­но, то у каж­до­го ком­пью­те­ра в интер­не­те есть уни­каль­ный адрес, его назы­ва­ют IP-адрес, или про­сто «айпи». В клас­си­че­ском виде IP-адрес — это четы­ре чис­ла через точ­ку. Напри­мер, у yandex.ru IP-адрес 77.88.55.88 (у Яндек­са кра­си­вый номер!).

Чис­ла и точ­ки — это то же самое, что части обыч­но­го поч­то­во­го адре­са. Толь­ко в поч­то­вом адре­се у нас стра­на, город, ули­ца и дом, а в интер­не­те это про­сто узлы свя­зи и маги­страль­ные роу­те­ры.

В тео­рии, если вы зна­е­те IP-адрес ком­пью­те­ра и може­те сфор­му­ли­ро­вать ему запрос, вы може­те «позво­нить» на любой ком­пью­тер, под­клю­чён­ный к интер­не­ту. Напри­мер, если вы запу­сти­ли на сво­ём домаш­нем ком­пью­те­ре фай­ло­вый сер­вер и зна­е­те IP-адрес домаш­не­го ком­пью­те­ра, вы може­те зай­ти на свой сер­вер из отпус­ка и залить на него отпуск­ные фото­гра­фии, нахо­дясь в дру­гой стране. Меж­ду вами и вашим домаш­ним желе­зом могут быть тыся­чи кило­мет­ров, но с помо­щью IP-адреса вы смо­же­те полу­чить доступ.

Это если в тео­рии и очень упро­щён­но. В жиз­ни есть несколь­ко нюан­сов.

Нюансы

Клас­си­че­ские IP-адреса име­ют огра­ни­чен­ную ёмкость: в такую струк­ту­ру поме­ща­ет­ся 4,2 млрд адре­сов. Оче­вид­но, что на всех людей на пла­не­те не хва­тит. А ведь IP-адреса нуж­ны не толь­ко мил­ли­ар­дам ком­пью­те­ров и смарт­фо­нов, но и дру­гим устрой­ствам: сер­ве­рам, роу­те­рам, шлю­зам и даже умно­му чай­ни­ку.

Пони­мая это, инже­не­ры при­ду­ма­ли новую вер­сию IP-адресов, где доступ­ных адре­сов на мно­го поряд­ков боль­ше. Сей­час все посте­пен­но пере­хо­дят на эту новую тех­но­ло­гию — она назы­ва­ет­ся IPv6.

Ещё нюанс: когда вы выхо­ди­те в интер­нет, ино­гда у вас может не быть пер­со­наль­но­го IP-адреса. Ваши запро­сы будут ухо­дить с какого-то адре­са, но он будет при­над­ле­жать не толь­ко вам, но и мно­же­ству дру­гих або­нен­тов. Меж­ду вами и интер­не­том будет узел, кото­рый от ваше­го име­ни при­ни­ма­ет и отправ­ля­ет запро­сы. Такой узел назы­ва­ют NAT — Network Address Translator. Из интер­не­та виден один NAT, из кото­ро­го прут мил­ли­о­ны запро­сов. Что нахо­дит­ся за этим NAT — интер­нет не зна­ет.

Если вы из отпус­ка сде­ла­е­те запрос по IP-адресу ваше­го NAT, он может раз­ве­сти рука­ми: «Я не знаю, куда даль­ше отправ­лять твой запрос, у меня тут мил­ли­он або­нен­тов. Пшёл вон!»

Неко­то­рые про­вай­де­ры домаш­не­го интер­не­та выде­ля­ют або­нен­там инди­ви­ду­аль­ные IP-адреса (без NAT), но даже тогда вам нуж­но будет настро­ить свой домаш­ний роу­тер, что­бы запрос «загру­зи фоточ­ки» он отправ­лял имен­но на ваш фай­ло­вый сер­вер, а не на умный чай­ник.

Как это выглядит?

Этот адрес, известный как «айпи», представляет собой код, состоящий из чисел, разделенных тремя точками, которые распознают конкретный компьютер в интернете. Он является 32-битным двоичным числом, состоящим из двух упомянутых выше субадресов (идентификаторов), которые, соответственно, распознают сеть и хост в ней с условной границей, разделяющей их. Он обычно отображается как 4 октета чисел от 0-255, представленных в десятичной форме вместо двоичной.

Например, 168.212.226.204 представляет собой 32-битный двоичный номер 10101000.11010100.11100010.11001100. Бинарный номер очень важен, потому что именно он определяет, к какому классу относится IP-адрес.

Расположение границы между сетью и хост-частями «айпи»-идентификатора определяется с помощью маски подсети. Это 32-битное двоичное число, которое действует как фильтр, когда оно применяется к аналогичному «айпи». Сравнивая маску подсети с ним, системы могут определять, какая его часть относится к сети, а какая — к хосту. В любом случае она имеет бит, установленный в «1», а базовый бит в «айпи» является частью сетевого адреса. В любом случае, когда маске подсети установлено значение «0», связанный бит является частью идентификатора хоста. На этих правилах основана используемая сегодня IP-адресация. Классы IP-адресов также имеют четкую структуру, о которой указано ниже.

Классы сетей

Имеются три класса IP адресов

  • IP адрес сети класса A использует крайние левые 8 битов (первый байт) для
    идентификации сети, оставшиеся 24 бита (три байта) идентифицируют сетевые
    интерфейсы компьютера в сети. Адреса класса A всегда имеют крайний левый
    бит, равный нулю — поэтому первый байт адреса принимает значения от 0 до
    127. Так доступно максимум 128 номеров для сетей класса A, с каждым,
    содержащим до 33,554,430 возможных интерфейсов.

    Однако, сети 0.0.0.0 (известный как заданный по умолчанию маршрут) и
    127.0.0.0 (зарезервированы для организации обратной связи (loopback)) имеют
    специальные предназначения и не доступны для использования, чтобы
    идентифицировать сети. Соответственно, могут существовать только 126 номеров
    для сети класса A.

  • IP адрес сети класса B использует крайние левые 16 битов (первые 2 байта)
    для идентификации сети, оставшиеся 16 бит идентифицируют сетевые интерфейсы
    компьютера в сети. Адреса класса B всегда имеют крайние левые два бита,
    установленные в 1 0. Сети класса B имеют диапазон от 128 до 191 для первого
    байта, каждая сеть может содержать до 32,766 возможных интерфейсов.

  • IP адрес сети класса C использует крайние левые 24 бита для идентификации
    сети, оставшиеся 8 бит идентифицируют сетевые интерфейсы компьютера в сети.
    Адрес сети класса C всегда имеет крайние левые 3 бита, установленные в 1 1 0
    или диапазон от 192 до 255 для крайнего левого байта. Имеется, таким образом,
    4,194,303 номеров, доступных для идентификации сети класса C, каждая может
    содержать до 254 сетевых интерфейса. (однако, сети класса C с первым
    байтом, большим, чем 223, зарезервированы и недоступны для использования).

Резюме:

Класс сети   Пригодный для использования диапазон
                A                 1 - 126
                B               128 - 191
                C               192 - 254

Имеются также специальные адреса, которые зарезервированы для ‘несвязанных’
сетей — которые является сетями, использующими IP, но не связаны с
Internet, Эти адреса:

  • Одна сеть класса A

    10.0.0.0

  • 16 сетей класса B

    172.16.0.0 — 172.31.0.0

  • 256 сетей класса C
    192.168.0.0 — 192.168.255.0

Возможные маски

  1. IPv4 CIDR

IP/маска

До последнего IP

в подсети

Маска

Всего адресов

Хостовых адресов

Класс

a.b.c.d/32

+0.0.0.0

255.255.255.255

1

(нет)

1/256 C

a.b.c.d/31

+0.0.0.1

255.255.255.254

2

2
1/128 C

a.b.c.d/30

+0.0.0.3

255.255.255.252

4

2

1/64 C

a.b.c.d/29

+0.0.0.7

255.255.255.248

8

6

1/32 C

a.b.c.d/28

+0.0.0.15

255.255.255.240

16

14

1/16 C

a.b.c.d/27

+0.0.0.31

255.255.255.224

32

30

1/8 C

a.b.c.d/26

+0.0.0.63

255.255.255.192

64

62

1/4 C

a.b.c.d/25

+0.0.0.127

255.255.255.128

128

126

1/2 C

a.b.c.0/24

+0.0.0.255

255.255.255.000

256

254

1 C

a.b.c.0/23

+0.0.1.255

255.255.254.000

512

510

2 C

a.b.c.0/22

+0.0.3.255

255.255.252.000

1024

1022

4 C

a.b.c.0/21

+0.0.7.255

255.255.248.000

2048

2046

8 C

a.b.c.0/20

+0.0.15.255

255.255.240.000

4096

4094

16 C

a.b.c.0/19

+0.0.31.255

255.255.224.000

8192

8190

32 C

a.b.c.0/18

+0.0.63.255

255.255.192.000

16 384

16 382

64 C

a.b.c.0/17

+0.0.127.255

255.255.128.000

32 768

32 766

128 C

a.b.0.0/16

+0.0.255.255

255.255.000.000

65 536

65 534

256 C = 1 B

a.b.0.0/15

+0.1.255.255

255.254.000.000

131 072

131 070

2 B

a.b.0.0/14

+0.3.255.255

255.252.000.000

262 144

262 142

4 B

a.b.0.0/13

+0.7.255.255

255.248.000.000

524 288

524 286

8 B

a.b.0.0/12

+0.15.255.255

255.240.000.000

1 048 576

1 048 574

16 B

a.b.0.0/11

+0.31.255.255

255.224.000.000

2 097 152

2 097 150

32 B

a.b.0.0/10

+0.63.255.255

255.192.000.000

4 194 304

4 194 302

64 B

a.b.0.0/9

+0.127.255.255

255.128.000.000

8 388 608

8 388 606

128 B

a.0.0.0/8

+0.255.255.255

255.000.000.000

16 777 216

16 777 214

256 B = 1 A

a.0.0.0/7

+1.255.255.255

254.000.000.000

33 554 432

33 554 430

2 A

a.0.0.0/6

+3.255.255.255

252.000.000.000

67 108 864

67 108 862

4 A

a.0.0.0/5

+7.255.255.255

248.000.000.000

134 217 728

134 217 726

8 A

a.0.0.0/4

+15.255.255.255

240.000.000.000

268 435 456

268 435 454

16 A

a.0.0.0/3

+31.255.255.255

224.000.000.000

536 870 912

536 870 910

32 A

a.0.0.0/2

+63.255.255.255

192.000.000.000

1 073 741 824

1 073 741 822

64 A

a.0.0.0/1

+127.255.255.255

128.000.000.000

2 147 483 648

2 147 483 646

128 A

0.0.0.0/0

+255.255.255.255

000.000.000.000

4 294 967 296

4 294 967 294

256 A

Количество адресов в подсети не равно количеству возможных узлов. Нулевой адрес IP резервируется для идентификации подсети, последний — в качестве широковещательного адреса, таким образом в реально действующих сетях возможно количество узлов на два меньшее количества адресов.

Сетевые адреса, адреса интерфейсов и широковещательные адреса

IP адреса могут иметь три возможных значения:

  • адрес IP сети (группа IP устройств, совместно использующих доступ к среде
    передачи — все находятся на том же самом сегменте Ethernet). Если в поле
    номера сети биты установлены в 0, то по умолчанию считается, что этот узел
    принадлежит той же самой сети, что и узел, с которого отправлен пакет;

  • широковещательный адрес IP сети (сообщение с таким адресом назначения
    должно рассылаться всем узлам, находящимся в той же сети, что и источник
    этого пакета). Все разряды IP адреса установлены в 1.

  • адрес интерфейса (типа платы Ethernet или PPP интерфейс на компьютере,
    маршрутизаторе, сервере печати и т.д.).Эти адреса могут иметь любое
    значение в битах поля узла, исключая все нули или все единицы, т.к. если
    будут все нули — адрес сети, все единицы — широковещательный адрес.

Резюме:

Для сети класса A...
(один байт - поле сети, следующие за ним - номер хоста)

        10.0.0.0 адрес сети класса A, потому что все биты адреса узла равны 0
        10.0.1.0 адрес узла этой сети
        10.255.255.255 широковещательный адрес этой сети, потому что все биты адреса
                       узла равны 1

Для сети класса B...
(два байта - поле сети, следующие за ним - номер хоста)

        172.17.0.0 адрес сети класса B
        172.17.0.1 адрес узла этой сети
        172.17.255.255 широковещательный адрес этой сети

Для сети класса C...
(три байта - поле сети, следующие за ним - номер хоста)

        192.168.3.0 адрес сети класса C
        192.168.3.42 адрес узла этой сети
        192.168.3.255 широковещательный адрес этой сети

Подсети в IPv4

Процесс деления предполагает разделение сети на несколько подсетей с определённым количеством адресов под хосты.

Определение префикса сети

Маска подсети в IPv4 состоит из 32 битов, непрерывной последовательности единиц (1), за которой следует непрерывная последовательность нулей (0). В маске подсети не может стоять единица после нуля.

Двоичная форма Точечно-десятичная нотация
IP-адрес
Маска подсети
Сетевой префикс
Адрес хоста (часть IP)

Сетевой префикс (адрес сети) вычисляется побитовой операцией AND между IP-адресом и маской. Результат AND равен единице тогда, когда оба операнда равны единице.

Подсчёт количества подсетей

Создание подсетей предполагает увеличение маски сети на несколько бит.

Двоичной форме Точечно-десятичная нотация
IP-адрес
Маска подсети
Сетевой префикс
Адрес хоста

(без префикса)

В примере выше маска подсети была увеличена на 2 бита, создавая тем самым 4 (22) возможных подсетей:

Сеть Сеть (двоичный) Широковещательный адрес

Общая формула: N=2n{\displaystyle N=2^{n}}, где N — количество подсетей, а n — маска сети в нотации CIDR делённая по модулю 8 (или просто количество добавленных бит к маске).

Подсчёт количества адресов для хостов в подсети

Количество возможных хостов в сети могут быть легко вычислены по формуле 232−n−2{\displaystyle 2^{32-n}-2} , где n — маска сети в нотации CIDR.
Биты маски подсети, равные нулю, отведены под адреса хостов. В приведённом выше примере маска подсети состоит из 26 бит, оставшиеся 6 бит могут быть использованы для идентификаторов хостов. Это позволяет создать сеть на 62 хоста (26−2).

Значения из одних нулей и значения из одних единиц зарезервированы для адреса сети и широковещательного адреса соответственно. Или другими словами первый и последний адрес подсети. Поэтому при подсчёте числа хостов надо вычитать 2 из общего числа доступных адресов.

Например, для маски /27 могут использоваться 8 подсетей. Каждый первый IP-адрес в подсети (.0, .32, .64, , .224), то есть адрес сети, и каждый последний IP-адрес в подсети (.31, .63, .95, .255), то есть широковещательный адрес, зарезервированы, соответственно для каждой сети доступно только 30 адресов (c .1 по .30, с .33 по .62, с.65 по .94,  с .225 по .254).

/24 сеть может быть разделена на следующие подсети увеличением маски подсети последовательно по одному биту. Длина маски влияет на общее количество хостов, которые могут быть определены в сети (последний столбец).

Размер префикса в битах Маска сети Доступно

подсетей

Доступно адресов для хостов Всего хостов на все подсети
/24 1 254 254
/25 2 126 252
/26 4 62 248
/27 8 30 240
/28 16 14 224
/29 32 6 192
/30 64 2 128
/31 128 2 * 256

*применимо только для соединений точка-точка

Специальные адреса и подсети

Первая и последняя подсети, полученной путём деления, изначально имели особое назначение и применение. Кроме того, в протоколе IPv4 зарезервировано два адреса в каждой сети: первый, использующийся как адрес сети, и последний, для отправки широковещательных пакетов.

Подсети ноль и «все единицы»

У первой подсети все биты адреса сети, следующие после префикса маршрутизации, равны нулю (0). Поэтому её ещё называют» нулевой подсетью. Последняя подсеть, соответственно, состояла из единиц и получила название «all-ones», или «все единицы».

Классы В и С

Основной отличительной
особенностью IP-адреса класса b будет значение двух старших битов,
равное 10. При этом размер сетевой части будет равняться 16 битам.
Формат адреса этой сети выглядит так:

По этой причине наибольшее число сетей класса B может быть 214 (16384) с адресным пространством 216
каждая из них. IP-адреса класса B начинаются в диапазоне от 128 до 191.
Это является отличительной особенностью, по которой можно определить
принадлежность сети к этому классу. Два байта, отведенные под адреса
этих сетей, за вычетом нулевых и состоящих из единиц адресов, могут
составить количество узлов, равное 65 534.

Любой IP-адрес класса C
начинается в диапазоне от 192 до 223, при этом номер сети занимает три
старших октета. Схематически адрес имеет такую структуру:

Три старших бита имеют первыми 110, сетевая часть 24 бита. Наибольшее число сетей в этом классе составляет 221 (это 2097152 сети). Под адреса узлов в IP-адресе сетей класса С отводится 1 байт, это всего 254 хоста.

Запись IP-адресов

Адрес
выглядит как 32-разрядное число в диапазоне от 0 до 4294967295. Это
говорит о том, что во всей сети Интернет может содержаться более 4
миллиардов полностью уникальных адресов объектов. Если записывать адреса
в двоичной или десятичной форме, то это вызывает свои неудобства по их
запоминанию или обработке. Поэтому, для упрощения написания таких
адресов, было решено делить полный адрес на четыре октета (8-разрядных
числа), разделенных точкой. Для примера: адрес который в
шестнадцатеричной системе выглядит как С0290612, в записи IP-адреса
будет выглядеть как 192.41.6.18. При этом наименьший адрес — это четыре
нуля, а максимальный — четыре группы по 255. Старшая область (та, что
располагается с левой стороны групп цифр от любой из разделительных
точек) занята областью адреса, младшая область (с правой стороны от этой
же разделительной точки) показывает номер интерфейса в этой сети.
Положение границы между хостовой и сетевой частями зависит от количества
бит, которое отвели на номер сети, бывает различным, разделение идет
только по границе октета (точки между ними) и позволяет определить
классы IP-адресов.

Маски подсетей

Для
того чтобы разделить идентификатор, необходимо применять маску подсети –
некий шаблон, помогающий отличить идентификаторы сетей от
идентификаторов узлов в IP-адресах. Классы IP-адресов не накладывают
ограничения на маску подсети. Маска внешне выглядит так же, как и адрес —
четыре группы цифр от 0 до 255. При этом сначала идут большие числа, за
ним меньшие. К примеру, 255.255.248.0 – это правильная маска подсети,
255.248.255.0 – неправильная. Маска 255.255.255.0 определяет начальные
три октета IP-адреса как идентификатор подсети.

При проектировании
сегментации сети предприятия необходимо, чтобы правильно была
организована IP-адресация. Классы IP-адресов, разделенные на сегменты с
помощью масок, позволяют не только увеличить количество компьютеров в
сети, но и организовать ее высокую производительность. Каждый класс
адреса имеет маску сети по умолчанию.

Для
дополнительных подсетей часто используются не маски по умолчанию, а
индивидуальные. Например, IP-адрес 170.15.1.120 может использовать маску
подсети 255.255.255.0 с идентификатором сети 170.15.1.0, при этом не
обязательно использовать маску подсети 255.255.0.0 с идентификатором
170.15.0.0, который используется по умолчанию. Это позволяет разбивать
существующую сеть организации класса В с идентификатором 170.15.0.0 на
подсети с помощью различных масок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *