О проекте
Содержание:
- История
- Медицинское оборудование
- Компоненты Versatile Link от Broadcom Limited
- Кварцевое одномодовое волокно
- История
- Классификация
- Характеристика оптоволоконного кабеля
- Применение
- Оптические системы дуговой защиты
- Особенности и основные преимущества ВОЛС
- Оптоволоконные кабели — как долго они могут работать?
- Запертый свет
История
Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.
Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу, принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда, без малого 40 лет назад, — необходимое условие для того, чтобы развивать новый вид проводной связи.
Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.
Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.
Медицинское оборудование
Еще одна область, в которой активно применяется оптическое волокно, – это медицинское оборудование. Изолирующие свойства оптического волокна обеспечивают защиту пациента, персонала и электроники от высоковольтной части аппаратуры. В качестве примера можно привести рентгеновский аппарат. Для генерации излучения к рентгеновской трубке подводится высокое напряжение. Оптоволокно обеспечивает гальваническую развязку между источником высокого напряжения и низковольтным управляющим оборудованием. При этом также устраняется влияние электромагнитных помех, возникающих при переключении высоких токов и напряжений.
Компоненты Versatile Link от Broadcom Limited
Конечно, невозможно перечислить всех возможных промышленных применений оптического волокна. Однако эта область телекоммуникаций активно развивается как во всем мире, так и в нашей стране.
Для реализации этих и других подобных систем передачи информации выпускаются индустриальные волоконно-оптические компоненты, отвечающие жестким условиям промышленности. Большую популярность среди разработчиков заслужили компоненты линейки Versatile Link, выпускаемые компанией Broadcom Limited (ООО «ЭФО» является официальным дистрибьютором Broadcom). Эта линейка компонентов предназначена для работы с пластиковым оптическим волокном и включает дискретные оптические передатчики и приемники, коннекторы, адаптеры (розетки) и POF патч-корды. Компоненты Versatile Link отличаются надежностью, экономичностью, а также простотой эксплуатации, благодаря чему могут использоваться практически в любых сферах промышленности.
В нашей следующей статье мы сделаем подробный обзор этой линейки компонентов. С ассортиментом продукции Versatile Link Вы можете ознакомиться на сайте компании «ЭФО», посвященном волоконно-оптическим компонентам – InFiber.ru:
- передатчики
- приемники
- коннекторы
- адаптеры
- кабель POF
- отладочные платы
Кварцевое одномодовое волокно
В одномодовом волокне, как следует из названия, распространяется только одна (основная) мода излучения. Это достигается за счет очень маленького диаметра сердцевины (обычно 8-10 мкм). Диаметр оптической оболочки такой же, как и у многомодового волокна – 125 мкм. Отсутствие других мод положительно сказывается на характеристиках оптоволокна (нет межмодовой дисперсии), увеличивая дальность передачи без ретрансляции до сотен километров и скорость до десятков Гбит/с (приводим стандартные значения, а не те «рекордные», которые достигаются в исследовательских лабораториях). Затухание в одномодовом волокне также крайне низкое (менее 0,4 дБ/км).
Диапазон длин волн для одномодового волокна достаточно широк. Обычно передача осуществляется на длинах волн 1310 и 1550 нм. При использовании технологии спектрального уплотнения каналов используются и другие длины волн (об этом чуть ниже).
Классификация. Ассортимент кварцевых одномодовых волокон весьма разнообразен. Международный стандарт ISO/IEC 11801 и европейский EN 50173 по аналогии с многомодовым волокном выделяют два больших класса одномодовых волокон: OS1 и OS2 (OS – Optical Single-mode). Однако в связи с существующей путаницей, связанной с этим делением, не рекомендуем ориентироваться на эту классификацию. Гораздо более информативными являются рекомендации ITU-T G.652-657, выделяющие больше типов одномодовых волокон.
В таблице ниже представлена краткая характеристика этих волокон и их применение. Но прежде – пара комментариев. Межмодовая дисперсия, отсутствующая в одномодовом волокне, является не единственным механизмом уширения оптического импульса. В одномодовом волокне на первый план выходят другие механизмы, прежде всего, хроматическая дисперсия, связанная с тем, что ни один источник излучения (даже лазер) не испускает строго монохроматичное излучение. При этом существует длина волны, при которой коэффициент хроматической дисперсии равен нулю. В большинстве случае работа на этой длине волны оказывается предпочтительной, но не всегда.
Тип волокна | Описание | Применение |
---|---|---|
G.652. Одномодовое волокно с несмещенной дисперсией | Наиболее распространенный тип одномодового волокна с точкой нулевой дисперсии на длине волны 1300 нм. Различают 4 подкласса (A, B, C и D). Волокна G.652.C и G.652.D отличаются низким затуханием вблизи «водного пика» («водным пиком» называют область большого затухания в стандартном волокне около длины волны 1383 нм). | Стандартные области применения. |
G.653. Одномодовое волокно с нулевой смещенной дисперсией | Точка нулевой дисперсии смещена на длину волны 1550 нм. | Передача на длине волны 1550 нм. |
G.654. Одномодовое волокно со смещенной длиной волны отсечки | Длина отсечки (минимальная длина волны, при которой волокно распространяет одну моду) смещена в область длин волн около 1550 нм. | Передача на длине волны 1550 нм на очень большие расстояния. Магистральные подводные кабели. |
G.655. Одномодовое волокно с ненулевой смещенной дисперсией | Это волокно имеет небольшое, но не нулевое, значение дисперсии в диапазоне 1530-1565 нм (ненулевая дисперсия уменьшает нелинейные эффекты при одновременном распространении нескольких сигналов на разных длинах волн). | Линии передачи со спектральным уплотнением каналов (DWDM). |
G.656. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи | Ненулевая дисперсия в диапазоне длин волн 1460-1625 нм. | Линии передачи со спектральным уплотнением каналов (CWDM/DWDM). |
G.657. Одномодовое волокно, не чувствительное к потерям на макроизгибе | Волокно с уменьшенным минимальным радиусом изгиба и с меньшими потерями на изгибе. Выделяют несколько подклассов. | Для прокладывания в ограниченном пространстве. |
Применение. Одномодовое кварцевое волокно, безусловно, является самым распространенным типом оптоволокна. С его помощью можно организовать передачу высокоскоростного сигнала на очень большие расстояния, а применение технологии спектрального уплотнения каналов (CWDM/DWDM) позволяет в разы увеличить пропускную способность линии связи. Одномодовое волокно часто применяется и на коротких дистанциях, например, в локальных сетях.
История
Рис.1, Дэниел Колладон сначала описал этот эффект в 1842 году, в статье, названной «О распространении луча света в параболическом жидком потоке». Иллюстрация взята из более поздней статьи Colladon, в 1884
Попытки использовать свет, для передачи информации уходят к временам, когда человек только научился сохранять огонь. Всевозможные сигналы, с помощью костров, фонарей, маяков человечество использовало тысячелетия.
В 1790 году, во Франции, Колд Шапп построил систему оптического телеграфа состоящую из цепи семафорных башен с сигнальными рычагами. Следующий большой шаг сделал в 1880 году американец Александр Грэхем Белл. Он изобрёл фотофон, в котором речевые сигналы передавались с помощью света. Однако эта идея не нашла практического применения. Погода и состояние атмосферы не позволяли гарантированно передавать сигнал на приемлемые расстояния. Атмосфера, как среда передачи была неудобна.
Дэниел Колладон ещё в 1842 году описал эффект названный «световой фонтан» или «световая труба», а в 1870 году, английский физик Джон Тиндаль продемонстрировал (см. Рис.1), что свет может передаваться в потоке воды. В его экспериментах использовался принцип полного внутреннего отражения, который используется в современных световодах.
Следующим заметным этапом был патент, который получил в 1934 году американец Норман Р. Френч на оптическую телефонную систему. Он предлагал модулировать речевыми сигналами свет и передавать его по системе «кабелей» состоящих из стержней изготовленных из чистого стекла. Для реализации этого проекта необходимо было иметь подходящий источник излучения и возможность изготовления сверхчистого материала для светопроводящих стержней. Технически реализовать его идею удалось только спустя четверть века.
В 1958 году американцы Артур Шавлов и Чарльз Г. Таунс, и независимо советские физики Прохоров и Басов разработали лазер. Первые лазеры начали работать в 1960 году. Позже, в 1962 году советский учёный Ж. Алфёров предсказал возможность создания гетеропереходов и построение на их основе полупроводниковых лазерных излучателей. Позже были созданы полупроводниковые светодиодные и лазерные излучатели. К этому времени уже были разработаны полупроводниковые фотодиоды. Но для построения эффективных сетей передачи данных необходимо было иметь световоды с коэффициентом затухания не более 20 дБ/км. Лучшие на то время световоды использующиеся в медицине для прямой передачи изображения на короткие расстояния составляло порядка 1000 дБ/км.
Прорыв был произведён в 1970 году компанией Corning. Они получили оптические волокна со ступенчатым профилем показателя преломления с коэффициентом затухания на длине волны 633 нм. менее 20 дБ/км. Уже к 1972 году удалось уменьшить коэффициент затухания на длине волны 850 нм. до 4 дБ/км. Современные многомодовые волокна имеют коэффициент затухания на длине волны 850 нм. не более 2,7 дБ/км., одномодовые волокна имеют коэффициент затухания на длине волны 1550 нм. не более 0,2 дБ/км.
Первые волоконно-оптические кабели были пущены в эксплуатацию для телефонной связи на кораблях военно-морского флота США в 1973 году. Позже они стали активно использоваться в авиации, позволяя полностью исключить помехи в каналах передачи данных и при этом существенно уменьшить вес оборудования.
Первый стандартный подводный волоконно-оптический кабель (ТАТ-8) был успешно проложен через Атлантический океан в 1988 году
Классификация
Профиль показателя преломления различных типов оптических волокон:слева вверху — одномодовое волокно;слева внизу — многомодовое ступенчатое волокно;справа — градиентное волокно с параболическим профилем
Оптические волокна могут быть одномодовыми и многомодовыми. Диаметр сердцевины одномодовых волокон составляет от 7 до 10 микрон. Благодаря малому диаметру сердцевины оптическое излучение распространяется по волокну в одной (основной, фундаментальной) моде и, как результат, отсутствует межмодовая дисперсия.
Существует три основных типа одномодовых волокон:
- одномодовое ступенчатое волокно с несмещённой дисперсией (стандартное) (SMF или SM, англ. step index single mode fiber), определяется рекомендацией ITU-T G.652 и применяется в большинстве оптических систем связи;
- одномодовое волокно со смещённой дисперсией (DSF или DS, англ. dispersion shifted single mode fiber), определяется рекомендацией ITU-T G.653. В волокнах DSF с помощью примесей область нулевой дисперсии смещена в третье окно прозрачности, в котором наблюдается минимальное затухание;
- одномодовое волокно с ненулевой смещённой дисперсией (NZDSF, NZDS или NZ, англ. non-zero dispersion shifted single mode fiber), определяется рекомендацией ITU-T G.655
Многомодовые волокна отличаются от одномодовых диаметром сердцевины, который составляет 50 микрон в европейском стандарте и 62.5 микрон в североамериканском и японском стандартах. Из-за большого диаметра сердцевины по многомодовому волокну распространяется несколько мод излучения — каждая под своим углом, из-за чего импульс света испытывает дисперсионные искажения и из прямоугольного превращается в колоколоподобный.
Многомодовые волокна подразделяются на ступенчатые и градиентные. В ступенчатых волокнах показатель преломления от оболочки к сердцевине изменяется скачкообразно. В градиентных волокнах это изменение происходит иначе — показатель преломления сердцевины плавно возрастает от края к центру. Это приводит к явлению рефракции в сердцевине, благодаря чему снижается влияние дисперсии на искажение оптического импульса. Профиль показателя преломления градиентного волокна может быть параболическим, треугольным, ломаным и т. д.
Полимерные (пластиковые) волокна производят диаметром 50, 62.5, 120 и 980 микрометров и оболочкой диаметром 490 и 1000 мкм.
Характеристика оптоволоконного кабеля
Оптический кабель
Все виды оптических кабелей можно охарактеризовать по способу их использования. По данной характеристике они распределяются на следующие группы:
- Магистральный. Данное изделие применяется при прокладке линий связи на большие расстояния с множественным числом каналов. Для этих целей применяется одномодовый оптический кабель, благодаря чему магистральные сети могут в кратчайшее время передавать множественные информационные потоки.
- Зондовый оптический кабель используется для осуществления передачи данных районировано на расстояние до 250 километров.
- Городские. Используются для распространения информации на маленькие расстояния (до 10 километров) и с множеством выходных каналов. Обычно применяются в пределах одного населенного пункта.
- Подводный оптический кабель, прокладка его осуществляется по дну различных водоемов. По данной причине такой тип кабеля должен иметь повышенную механическую прочность для чего он дополнительно экранируется лентой из алюминиевого сплава.
- Объектовый оптический кабель применяется для прокладки коммуникационной сети внутри определенного здания и распределения информации на пользователей. Подключение к нему устройств приема данных производится обычно через оптический патч корд.
- Монтажный оптический кабель применяется для проведения монтажных работ внутри аппаратуры, его подключение к различным блокам устройства производится оптическим кроссом.
Прокладка коммуникационных сетей может осуществляться подземным или воздушным способом. В случае если прокладывается воздушная сеть, то кабель должен быть самонесущим, то есть выдерживать большие физические нагрузки.
Устройство оптического кабеля
По типу волокон, оптоволокно подразделяется на одномодовые, многомодовые оптические кабеля, а так же комбинированные.
В качестве основных достоинств оптоволоконного кабеля можно выделить:
- Высокая скорость передачи данных;
- Защита от неправомерного использования телекоммуникаций;
- Высокая степень механической прочности;
- Большой срок эксплуатации;
- Незначительные размеры уменьшают расходы на монтаж дополнительных несущих конструкций.
Применение
Волоконно-оптическая связь
Основная статья: Волоконно-оптическая связь
Волоконно-оптический кабель
Основное применение оптические волокна находят в качестве среды для передачи информации в волоконно-оптических телекоммуникационных сетях различных уровней: от межконтинентальных магистралей до домашних компьютерных сетей. Применение оптических волокон для линий связи обусловлено тем, что оптическое волокно обеспечивает высокую защищённость от несанкционированного доступа, низкое затухание сигнала при передаче информации на большие расстояния, возможность оперировать с чрезвычайно высокими скоростями передачи и пропускной способностью даже при том, что скорость распространения сигнала в волокнах может быть до 30 % ниже, чем в медных проводах и до 40 % ниже скорости распространения радиоволн. Уже к 2006 году была достигнута частота модуляции 111 ГГц, в то время как скорости 10 и 40 Гбит/с стали уже стандартными скоростями передачи по одному каналу оптического волокна. При этом каждое волокно, используя технологию спектрального уплотнения каналов может передавать до нескольких сотен каналов одновременно, обеспечивая общую скорость передачи информации, исчисляемую терабитами в секунду. Так, к 2008 году была достигнута скорость 10,72 Тбит/с, а к 2012 — 20 Тбит/с. Последний рекорд скорости — 255 Тбит/с.
С 2017 года специалисты говорят о достижении практического предела существующих технологий оптоволоконных линий связи и о необходимости кардинальных изменений в отрасли.
Волоконно-оптический датчик
Оптическое волокно может быть использовано как датчик для измерения напряжения, температуры, давления и других параметров. Малый размер и фактическое отсутствие необходимости в электрической энергии дают волоконно-оптическим датчикам преимущество перед традиционными электрическими в определённых областях.
Оптическое волокно используется в гидрофонах в сейсмических или гидролокационных приборах. Созданы системы с гидрофонами, в которых на волоконный кабель приходится более 100 датчиков. Системы с гидрофоновым датчиком используются в нефтедобывающей промышленности, а также флотом некоторых стран. Немецкая компания Sennheiser разработала лазерный микрофон, основными элементами которого являются лазерный излучатель, отражающая мембрана и оптическое волокно.
Волоконно-оптические датчики, измеряющие температуры и давления, разработаны для измерений в нефтяных скважинах. Они хорошо подходят для такой среды, работая при температурах, слишком высоких для полупроводниковых датчиков.
С использованием полимерных оптических волокон создаются новые химические датчики (сенсоры), которые нашли широкое применение в экологии, например, для детектирования аммония в водных средах.
Разработаны устройства дуговой защиты с волоконно-оптическими датчиками, основными преимуществами которых перед традиционными устройствами дуговой защиты являются: высокое быстродействие, нечувствительность к электромагнитным помехам, гибкость и лёгкость монтажа, диэлектрические свойства.
Оптическое волокно применяется в лазерном гироскопе, используемом в Boeing 767[источник не указан 2622 дня] и в некоторых моделях машин (для навигации). Волоконно-оптические гироскопы применяются в космических кораблях «Союз». Специальные оптические волокна используются в интерферометрических датчиках магнитного поля и электрического тока. Это волокна, полученные при вращении заготовки с сильным встроенным двойным лучепреломлением.
Другие применения
Диск фрисби, освещённый оптическим волокном
Оптические волокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону. В некоторых зданиях оптические волокна направляют солнечный свет с крыши в какую-нибудь часть здания. Также в автомобильной светотехнике (индикация на приборной панели).
Волоконно-оптическое освещение также используется в декоративных целях, включая коммерческую рекламу, искусство и искусственные рождественские ёлки.
Оптическое волокно также используется для формирования изображения. Пучок света, передаваемый оптическим волокном, иногда используется совместно с линзами — например, в эндоскопе, который используется для просмотра объектов через маленькое отверстие.
Оптическое волокно используется при конструировании волоконного лазера.
Оптические системы дуговой защиты
Следующий пример использования оптического волокна несколько отличается от всех предыдущих, поскольку здесь оптоволокно выступает не просто как канал связи, а как основной элемент системы. Речь идет об оптических системах защиты от электрической дуги в комплектных распределительных устройствах (КРУ) электрических подстанций. Такие системы регистрируют оптическое излучение вспышки света, возникающей при дуговом коротком замыкании. Этот подход позволяет минимизировать время срабатывания выключателя в случае аварии. В качестве чувствительного элемента обычно используется линзовый оптический датчик, собирающий излучение вспышки и передающий по оптоволокну на управляющее устройство, или же волоконно-оптический датчик, представляющий собой отрезок оптоволокна в прозрачной оболочке, который регистрирует свет всей своей поверхностью. Управление датчиками может производиться удаленно. Подробнее об оптических системах защиты от дуговых замыканий можно прочитать здесь.
Особенности и основные преимущества ВОЛС
Волоконно-оптические системы связи в настоящее время получили широкое распространение по всему миру, постепенно вытесняя другие проводные способы передачи данных благодаря своим особенностям и уникальным характеристикам.
Давайте более подробно рассмотрим некоторые ключевые моменты, чтобы понимать, в чем преимущество волоконно-оптической связи:
- пропускная способность. Это одна из основных характеристик, которая важна для линии связи. Потенциал одного канала позволяет выйти на объем в несколько терабит за секунду;
- универсальность. По оптическому кабелю можно передавать сигналы различной модуляции;
минимальный коэффициент затухания. Благодаря этому качеству, длина участка сети без использования дополнительных ретрансляторов или усилителей может достигать до 100 километров;
безопасность данных. К волоконно-оптической линии практически невозможно подключится злоумышленнику – в случае физического нарушения целостности канала сигнал перестанет проходить сквозь кабель, а надежное кодирование убережет от перехвата информации при помощи программных средств. Дополнительно система безопасности предупредит о попытке проникновения и взлома. Именно благодаря такой особенности, оптические кабели используют различные организации (правоохранительные органы, банки, исследовательские компании), которые работают с секретными данными;
пожарная безопасность. Благодаря своему строению и используемым материалам, оптико-волоконные кабели не поддерживают горение и не приводят к образованию искры. Это позволяет использовать их на химических, нефтеперерабатывающих и других предприятиях с повышенным уровнем пожарной опасности;
экономическая выгода. Несмотря на то, что стоимость прокладывания линии довольно высокая, она все равно будет дешевле и качественнее, чем традиционное соединение с использованием медного кабеля. Дополнительно стоит учесть минимальные расходы на усилители сигнала, особенно, если речь идет о больших участках магистралей. Для сравнения, ретрансляторы при стандартном подключении должны устанавливаться каждые 5-7 километров, а при использовании оптико-волоконного кабеля – каждые 100 километров;
надежность и долговечность. При использовании соединения в стандартных климатических условиях, срок службы кабеля и соединительного оборудования будет примерно в два раза больше, чем при эксплуатации медного кабеля.
Благодаря этим преимуществам линии связи на основе оптико-волоконных соединений пользуются большой популярностью в наше время по всему миру.
Больше о волоконно-оптических линиях связи и их особенностях проектирования можно узнать на ежегодной выставке «Связь».
Квантовая сеть — технология будущегоКонцентраторы, что это такое?Мобильный или m-банкинг
Оптоволоконные кабели — как долго они могут работать?
Эти кабели сконструированы таким образом, чтобы могли работать около 40 лет. Однако стоит отметить, что стекловолокно, из которого они изготовлены, может проводить свет, даже через много тысяч лет, если защитные слои, которые его окружают, останутся герметичными. На сокращение срока службы кабеля влияют разного рода загрязнения, которые могут попасть внутрь, особенно тогда, когда он выходит из строя. Сколько лет оптоволоконный кабель сможет безупречно работать, зависит не только от его состояния, но и от правильности работы всех остальных устройств в сети. Они всегда должны быть защищены, но существует риск случайного или преднамеренного повреждения, например, при земляных работах. Ожидаемый срок службы оптоволоконных кабелей и возможность их повреждения приводит к тому, что время работы такого кабеля составляет от 20 до 25 лет.
Запертый свет
По медной витой паре (как в вашем интернет-кабеле) во множестве движутся электроны. Ток предается по проводнику и несет с собой закодированную в последовательности импульсов — информацию. Нули и единицы — двоичный код, о котором слышали, пожалуй, все. Оптический проводник сигнала работает по тому же принципу, но с точки зрения физики, с ним все гораздо сложнее. Тут могла бы быть получасовая лекция о квантовой механике, и о том, как множество именитых физиков пришли в тупик, пытаясь понять природу света, но постараемся обойтись без пространных рассуждений.
Достаточно держать в уме то, что подобно электронам, фотоны или световые волны (на самом деле в нашем контексте это одно и то же), могут переносить закодированную информацию. Так, например, на аэродромах, в случаях отказа радиосвязи, передают сигналы самолетам при помощи направленных прожекторов. Но то примитивный метод, да и работает он лишь на расстоянии прямой видимости. В то же время, по оптоволокну свет передается на километры и далеко не по прямой траектории.
Чтобы добиться такого эффекта, можно было бы использовать зеркала. Собственно, с этого инженеры-испытатели и начали свои эксперименты. Они покрывали металлические трубы изнутри зеркальным слоем и направляли внутрь луч света. Но мало того, что подобные световоды стоили непомерно дорого. Свет многократно отражался от их стенок и постепенно затухал, терял силу и совершенно сходил на нет.
Зеркала не годились. Иначе и быть не могло. Даже самое дорогое зеркало не идеально. Его коэффициент отражения меньше 100% и после каждого падения на зеркальную поверхность световой луч теряет часть энергии, а в замкнутом объеме световода таких преломлений происходит неисчислимое множество.
Тут-то и пришло время вспомнить о пруде и тех давних исследованиях, что основывались на наблюдении за поведением света в воде. Представьте, как луч закатного солнца падает на поверхность воды, преодолевает границу и направляется вниз, к дну пруда.
Те из читателей, кто помнит школьный курс физики, наверняка уже догадываются, что свет изменит направление своего движения. Часть света пройдет под воду, чуть изменив угол своего движения, а другая незначительная часть света отразится обратно в небо, потому, как «угол падения равен углу отражения». Если долгое время наблюдать за этим явлением, однажды, можно заметить, что свет, отраженный от зеркала под водой, под определенным углом так и не сумеет вырваться наружу — отразится от границы воды и воздуха полностью, лучше, чем от всякого зеркала. Дело не в воде как таковой, а в сочетании двух сред с различными оптическими свойствами — неодинаковыми коэффициентами преломления. Для создания световой ловушки достаточно минимального их различия.