Диаграмма антенны

Формирование диаграммы направленности

Формирование диаграммы направленности в антеннах может осуществляться аналоговым либо цифровым способом.

Цифровой метод применяется в цифровых антенных решётках. Цифровое диаграммообразование подразумевает под собой цифровой синтез диаграммы направленности в режиме приёма, а также формирование заданного распределения электромагнитного поля в раскрыве антенной решётки в режиме передачи.

Наибольшее распространение получило выполнение цифрового диаграммообразования (англ. digital beamforming) на основе операции быстрого преобразования Фурье, позволяющего формировать ортогональную систему так называемых вторичных пространственных каналов, в которой максимум диаграммы направленности одного канала совпадает с нулями остальных.

Принцип действия

Иллюстрация трансформации параллельного контура в дипольную антенну. Синие линии — силовые линии электрического поля, красные — магнитного.

Упрощённо принцип действия антенны состоит в следующем. Как правило, конструкция антенны содержит металлические (токопроводящие) элементы, соединённые электрически (непосредственно или через линию питания — фидер) с радиопередатчиком или с радиоприёмником. В режиме передачи переменный электрический ток, создаваемый источником (например, радиопередатчиком), протекающий по токопроводящим элементам такой антенны, в соответствии с законом Ампера порождает в пространстве вокруг себя переменное магнитное поле. Это меняющееся во времени магнитное поле, в свою очередь, не только воздействует на породивший его электрический ток в соответствии с законом Фарадея, но и создаёт вокруг себя меняющееся во времени вихревое электрическое поле. Это переменное электрическое поле создаёт вокруг себя переменное магнитное поле и так далее — возникает взаимосвязанное переменное электромагнитное поле, образующее электромагнитную волну, распространяющуюся от антенны в пространство. Энергия источника электрического тока преобразуется антенной в энергию электромагнитной волны и переносится электромагнитной волной в пространстве. В режиме приёма переменное электромагнитное поле падающей на антенну волны наводит токи на токопроводящих элементах конструкции антенны, которые поступают в нагрузку (фидер, радиоприёмник). Наведённые токи порождают напряжения на входном импедансе приёмника.

Основные типы антенн

Мощная антенна телебашни (высота над землёй 326 метров, снято суперзумом)

Антенно-мачтовое сооружение с установленными на нём антеннами

Телевизионные антенны типа «волновой канал» метрового и дециметрового диапазонов

Телевизионная антенна на мачте. Такая установка весьма характерна в сельской местности

Вибраторные уголковые антенны на первом искусственном спутнике Земли разработаны профессором РТФ МЭИ Г. Т. Марковым. Две антенны располагаются крест-накрест, каждая состоит из двух плеч-штырей длиной по 2,4 м и по 2,9 м, угол между плечами в паре — 70°. Такая антенна на рабочих длинах волн 15 и 7,5 м обеспечивала близкую к равномерной характеристику направленности (требовалось в связи с тем, что спутник был неориентирован) и хорошие входные импедансы с учетом влияния металлического корпуса спутника.

Волноводно-щелевая ФАР в составе головки самонаведения противокорабельной ракеты Х-35Э. МАКС-2005.

Содержание этого раздела является скорее не классификацией, а простым перечислением типов антенн со ссылками на их более подробное описание.

Телевизионная комнатная антенна дециметрового диапазона в виде рамки.

Телескопическая антенна

  • Вибраторная антенна
    • Симметричный вибратор (диполь)

      • Разрезной вибратор
      • Шунтовой вибратор
      • («петлевой вибратор Пистолькорса», шлейф-вибратор)
      • Диполь Надененко
      • Уголковая вибраторная антенна
      • Антенна «Inverted V»
      • «Коаксиальная» антенна
      • CFR-антенна
    • Несимметричный вибратор
      • Антенна «Ground Plane»
      • Укороченная штыревая антенна
      • Коллинеарная антенна
      • J-образная антенна
      • Антенна зенитного излучения
      • Диэлектрическая резонаторная антенна
      • Вертикальная антенна верхнего питания
      • Антенна Александерсена
    • Турникетная антенна
    • Аэростатная антенна
    • Директорная антенна

      Антенна типа «волновой канал» (антенна Уда — Яги)

    • Антенна СГД (синфазная горизонтальная диапазонная)
  • Щелевая антенна

    • Щелевой вибратор
    • Пазовая антенна
    • Волноводно-щелевая антенна
  • Апертурная антенна
    • Открытый конец металлического волновода
    • Рупорная антенна
    • Зеркальная антенна

      • Прямофокусная зеркальная антенна
      • Офсетная зеркальная антенна
      • Антенна Кассегрена
      • Антенна Грегори
      • Зеркальная антенна зонтичного типа
      • Рупорно-параболическая антенна
      • Перископическая антенна
      • Тороидальная антенна
    • Антенны со специальной формой диаграммы направленности
    • Линзовая антенна

      • Линза Люнеберга
      • Линза Ротмана
      • Линза Ван-Атта
  • Антенна бегущей волны

    • Спиральная антенна
    • Диэлектрическая стержневая антенна
    • Импедансная антенна
    • Антенна вытекающей волны
    • Антенна с сосредоточенной емкостью
    • V-образная антенна
    • Ромбическая антенна
    • Антенна Бевереджа

      • V-образная антенна (вертикальная)
      • λ-образная антенна
    • Антенны БС, БЕ и БИ
  • Слабонаправленные антенны диапазона СВЧ
    • Полосковая антенна (патч-антенна)
      • Микрополосковая печатная антенна
      • Антенна PIFA
    • Сингулярная антенна
    • Чип-антенна
  • Сверхширокополосные антенны
    • Антенны на принципе электродинамического подобия
      • Биконическая антенна
      • Дискоконусная антенна
      • Излучатель типа «бабочка»
    • Логопериодическая антенна

      • Вибраторная логопериодическая антенна
      • Спиральная логопериодическая антенна
    • Фрактальные антенны
    • Т-рупор
    • Антенна Вивальди
  • Антенная решетка
    • Фазированная антенная решётка (ФАР)

      • Пассивная ФАР
      • Активная ФАР
      • Цифровая антенная решётка
    • Многолучевая антенная решетка
    • MIMO-антенна
    • CTS-антенна
  • Пеленгаторная антенна
    • Рамочная антенна
    • Двухрамочная антенна
    • Антенна Эдкока
    • Антенна Вулленвебера
  • Антенна с обработкой сигнала
    • Радиоинтерферометр
    • Антенна с синтезированной апертурой
    • Радиооптическая антенная решетка
  • Электрически малая антенна
    • Магнитная антенна

      • С ферритовым сердечником
      • Магнитная рамочная антенна
    • Наномеханическая магнитоэлектрическая антенна
  • Распределённые антенны
  • Антенны для преобразования энергии электромагнитной волны в электрическую энергию и для средств RFID
    • Ректенна = антенна + выпрямитель
    • Наноантенна — антенна для резонансного преобразования оптического излучения в электрическую энергию
  • Псевдо-антенны (антенны с мифическими техническими характеристиками)
    • Ртутная антенна
    • CFA-антенна
    • EH-антенна (шутливо называемая «НЕ-антенна» из-за ошибочного обоснования механизма работы)
  • Плазменная антенна
  • Концептуальные антенны

Основные положения

Диаграммой направленности (ДН) антенны по полю часто называют зависимость модуля комплексной амплитуды вектора напряженности E¯{\displaystyle {\bar {E}}} электрической компоненты электромагнитного поля, создаваемого антенной в дальней зоне, от угловых координат θ{\displaystyle \theta } и ϕ{\displaystyle \phi } точки наблюдения в горизонтальной и вертикальной плоскости, то есть зависимость E(θ,ϕ){\displaystyle E(\theta ,\phi )}.

ДН обозначается символом f(θ,ϕ){\displaystyle f(\theta ,\phi )}. ДН нормируют — все значения E(θ,ϕ){\displaystyle E(\theta ,\phi )} делят на максимальное значение Em{\displaystyle E_{m}} и обозначают нормированную ДН символом F(θ,ϕ){\displaystyle F(\theta ,\phi )}. Очевидно, ≤F(θ,ϕ)≤1{\displaystyle 0\leq F(\theta ,\phi )\leq 1}.

Также можно определить ДН как комплексную величину. В этом случае, аналогично указанному выше, ДН есть:

F∘(θ,ϕ)=E∘m(θ,ϕ)maxθ,ϕ|E∘m(θ,ϕ)|{\displaystyle {\stackrel {\circ }{F}}\left(\theta ,\phi \right)={\frac {{\stackrel {\circ }{E}}_{m}\left(\theta ,\phi \right)}{\max _{\theta ,\phi }\left}}},

где E∘m{\displaystyle {\stackrel {\circ }{E}}_{m}} — комплексная амплитуда вектора в точке дальней зоны.

ДН характеризуется шириной ΘA{\displaystyle \Theta _{A}} её главного луча на уровне 0,5 от её максимального значения по мощности и коэффициентом усиления G{\displaystyle G}, которые связаны соотношениями:

G=4πSAλ2{\displaystyle G={\frac {4\pi S_{A}}{\lambda ^{2}}}}, SA=πdA24{\displaystyle S_{A}={\frac {\pi d_{A}^{2}}{4}}}, ΘA=λdA{\displaystyle \Theta _{A}={\frac {\lambda }{d_{A}}}},

где SA{\displaystyle S_{A}}, dA{\displaystyle d_{A}} — эффективная площадь и протяженность апертуры антенны.

ДН обычно описываются не только в плоскости, но и в трехмерном отображении. Для упрощения их рассмотрения, принимают две проекции ДН:

  • горизонтальную (азимутальная)
  • вертикальную (по углу места)

При совместном рассмотрении проекций проясняется более полная картина самой ДН и, как подтверждает практика, по этим данным можно судить об эффективности антенны применительно к решению конкретной задачи.

По форме диаграммы направленности антенны обычно подразделяются на узконаправленные и широконаправленные. Узконаправленные антенны имеют один ярко выраженный максимум, который называют основным лепестком, и побочные максимумы (обычно имеющие отрицательное влияние), амплитуду которых стремятся уменьшить. Узконаправленные антенны применяют для концентрации мощности радиоизлучения в одном направлении для увеличения дальности действия радиоаппаратуры, а также для повышения точности угловых измерений в радиолокации. Широконаправленные антенны имеют хотя бы в одной плоскости диаграмму направленности, которую стремятся приблизить к круговой. Они находят применение, например, в телерадиовещании. Часто лепестки диаграммы направленности называют лучами антенны.

Диаграмма направленности антенны определяется амплитудно-фазовым распределением компонент электромагнитного поля в апертуре антенны — некоторой условной расчётной плоскости, связанной с её конструкцией. Разработка антенны с требуемой диаграммой направленности сводится, таким образом, к задаче обеспечения нужной картины электромагнитного поля в плоскости апертуры. Существуют фундаментальные ограничения, связывающие обратной зависимостью ширину луча и относительный размер антенны, то есть размер, делённый на длину волны. Поэтому узкие лучи требуют антенн больших размеров или применения более коротких волн. С другой стороны, максимальное сужение луча при заданном размере антенны ведёт к возрастанию уровня боковых лепестков. Поэтому в данном моменте приходится идти на приемлемый компромисс.

ДН обычно измеряют в горизонтальной или вертикальной плоскостях, для облучателей — в плоскостях Е или Н.

Диаграмма направленности антенны обладает свойством взаимности, то есть имеет аналогичные характеристики на передачу и приём в одном и том же диапазоне волн.

Литература

  • Пистолькорс А. А. Антенны. — М.: Связьиздат, 1947. — С. 478.
  • Панченко Б. А., Нефёдов Е. И. Микрополосковые антенны. — М.: Радио и связь, 1986. — С. 144. — 9400 экз.
  • Белоцерковский Г. Б. Основы радиотехники и антенны. — М.: Советское радио, 1969. — 432 с.
  • Антенны и устройства СВЧ / Под ред. Д. И. Воскресенского.. — М.: Радио и связь, 1981. — 432 с.
  • В. С. Филиппов, Л. И. Пономарев, А. Ю. Гринев и др. Антенны и устройства СВЧ. Проектирование фазированных антенных решеток / Под ред. Д. И. Воскресенского.. — Радио и связь, 1994. — 592 с.
  • Устройства СВЧ и антенны. Проектирование фазированных антенных решеток. Изд. 4-е, доп. и перераб. / Под ред. Д. И. Воскресенского. — М.: Радиотехника, 2003. — 632 с.
  • Должиков В. В., Цыбаев Б. Г. . Активные передающие антенны. — М., 1984. — 144 с.
  • Бова Н. Т., Резников Г. Б. Антенны и устройства СВЧ. — К.: Вища школа, 1982. — 272 с.
  • Долуханов М. П. Распространение радиоволн. — М.: Связь, 1965. — 399 с.
  • Коротковолновые антенны / Под ред. Айзенберга. — М.: Радио и связь, 1985. — 536 с.
  • Ротхаммель К. Антенны = перевод с немецкого. — СПб.: «Бояныч», 1998. — 656 с.
  • Драбкин А. Л., Коренберг Е. Б. Антенны. — М.: Радио и связь, 1992.
  • Кисмерешкин В. П. Телевизионные антенны для индивидуального приема. — М.: Связь, 1976.

Выводы

  1. Рамочный вибратор с периметром 1λ любой формы формирует близкую к изотропной диаграмму направленности. Есть небольшое усиление перпендикулярно плоскости рамки — для полуволновой петли равное 2.13 dBi, а для квадратной рамки около 3.5 dBi.
  2. При добавлении рефлектора к рамке её направленность можно увеличить до 6.95 dBi для 2-элементного волнового канала или до 7.73 dBi для двойного квадрата.
  3. На частотах ниже 50 МГц размещение любой антенны на небольшой высоте над землёй (в единицы лямбд) очень существено изменяет результирующую ДН. 2.13 dBi диполь превращается в 8.2 dBi, 6.95 dBi волновой канал превращается в 11.8 dBi, 7.73 dBi двойной квадрат превращается в 12.4 dBi.
  4. Данные по направленности описанные у Лесли, Бирда, Ротхаммеля и Шейко — относятся к низкоподвешенным над землёй антеннам, к которым относятся практически все КВ антенны.
  5. Сергей Сотников экстраполировал производительность КВ антенн двойной квадрат на УКВ, почему этого делать нельзя — написано в „Главе 12.1.2 Земля на УКВ“ книги Гончаренко.
  6. Чтобы обосновать такую огромную направленность квадратов — Сотников кардинально переписал принцип работы квадрата, сравнив его с 2-этажной ФАР из полуволновых диполей и волновых каналов.
  7. Реальная направленность антенн двойной и тройной квадрат незначительно (менее 1 dB) превосходит направленность 2 и 3-элементных волновых каналов.
  8. Волновое сопротивление двойного квадрата (с разносом 0.15λ) близко к 150 Ом. Для работы на 75 Ом необходимо ССУ 2:1, а для 50 Ом — ССУ 3:1. При работе через ССУ 1:1 КСВ не может быть <2 на резонансной частоте.
  9. Размеры антенн приведенные Сотниковым рассчитаны со значительным промахом по резонансу и по минимуму КСВ. Так антенна на диапазон 222-230 МГц имеет резонанс примерно на 242-245 МГц, а на своём расчетном диапазоне КСВ75 превышает 7-8.
  10. Если отбросить завышенные оценки 10-11 dBi, антенна может быть вполне рабочая (при решении вопроса соглсования), 6.7 dBi на VHF для телевидения вполне приличное усиление.
  11. Направленность двойного квадрата не соответствует 5-элементному волновому каналу. Выпускавшая промышленно антенна Уда-Яги на 6-12 канал (2-трубный рефлектор, петлевой вибратор, 4 директора) при длине 1.35 метра давала усиление от 8.6 dBi на 174 МГц до 10.9 dBi на 230 МГц и простое согласование на 75 Ом. Узкополосная (одноканальная) Уда-Яги при равной длине или равном количестве элементов — будет иметь ещё выше усиление.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *